دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 7 نویسندگان: Reed E. Pyeritz (editor), Bruce R. Korf (editor), Wayne W. Grody (editor) سری: ISBN (شابک) : 0128125322, 9780128125328 ناشر: Academic Pr سال نشر: 2019 تعداد صفحات: 574 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 26 مگابایت
در صورت تبدیل فایل کتاب Emery and Rimoins Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب اصول و عملکرد Emery و Rimoin در ژنتیک پزشکی و ژنومیک: اختلالات قلبی عروقی، تنفسی و گوارشی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
اصول و عملکرد Emery و Rimoin در ژنتیک و ژنومیک پزشکی: اختلالات قلبی عروقی، تنفسی و گوارشی، ویرایش هفتم شامل آخرین اطلاعات در مورد موضوعات اصلی مانند تشخیص قبل از تولد، ژنوم و توالی اگزوم است. ، ژنتیک سلامت عمومی، مشاوره ژنتیک و استراتژی های مدیریت و درمان. این منبع جامع و در عین حال کاربردی، بر مبانی نظری و تحقیقاتی مربوط به کاربردهای ژنتیک پزشکی در طیف کاملی از اختلالات ارثی و کاربردهای پزشکی تأکید دارد. بخش های به روز شده در این نسخه، ژنتیک اختلالات قلبی عروقی، تنفسی و گوارشی را با تاکید بر عوامل تعیین کننده ژنتیکی و مسیرهای جدید برای تشخیص، پیشگیری و مدیریت بیماری پوشش می دهد.
علاوه بر این، محققان ژنتیک، دانشجویان و متخصصان بهداشت، فصول جدید و کاملاً تجدید نظر شده ای را در مورد ژنتیک مولکولی نقایص مادرزادی قلب، کاردیومیوپاتی های ارثی، فشار خون بالا، فیبروز کیستیک، آسم، آمفیزم ارثی ریوی، بیماری التهابی روده پیدا خواهند کرد. و اختلالات متابولیسم رنگدانه صفرا در میان سایر شرایط.
Emery and Rimoins Principles and Practice of Medical Genetics and Genomics: Cardiovascular, Respiratory, and Gastrointestinal Disorders, Seventh Edition includes the latest information on seminal topics such as prenatal diagnosis, genome and exome sequencing, public health genetics, genetic counseling, and management and treatment strategies. This comprehensive, yet practical, resource emphasizes theory and research fundamentals relating to applications of medical genetics across the full spectrum of inherited disorders and applications to medicine. Updated sections in this release cover the genetics of cardiovascular, respiratory and gastrointestinal disorders, with an emphasis on genetic determinants and new pathways for diagnosis, prevention and disease management.
In addition, genetic researchers, students and health professionals will find new and fully revised chapters on the molecular genetics of congenital heart defects, inherited cardiomyopathies, hypertension, cystic fibrosis, asthma, hereditary pulmonary emphysema, inflammatory bowel disease, and bile pigment metabolism disorders among other conditions.
Cover EMERY AND RIMOIN’S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS Copyright LIST OF CONTRIBUTORS PREFACE TO THE SEVENTH EDITION OF EMERY AND RIMOIN’S PRINCIPLES AND PRACTICE OF MEDICAL GENETICS AND GENOMICS PREFACE TO CARDIOVASCULAR, RESPIRATORY, AND GASTROINTESTINAL DISORDERS Section 1: Cardiovascular Disorders 1 - Congenital Heart Defects 1.1 Introduction 1.2 The Evaluation of the Patient With Congenital Heart Defect 1.3 Embryology 1.4 Specific Syndromes With Congenital Heart Defect 1.4.1 Chromosomal Disorders 1.4.1.1 Trisomy 21 (Down Syndrome) 1.4.1.2 Trisomy 18 (Edwards Syndrome) 1.4.1.3 Trisomy 13 (Patau Syndrome) 1.4.1.4 Turner Syndrome (Ulrich–Turner Syndrome) 1.4.2 Microdeletions/Microduplication Syndromes 1.4.2.1 22q11 Deletion Syndrome 1.4.2.2 Williams Syndrome 1.4.2.3 Alagille Syndrome 1.4.3 Single-Gene Disorders 1.4.3.1 Noonan Syndrome 1.4.3.2 Holt–Oram Syndrome 1.4.3.3 CHARGE Syndrome 1.4.4 Heart Malformation and Metabolic Disorders 1.4.4.1 Zellweger Syndrome 1.4.4.2 Smith–Lemli–Opitz Syndrome 1.5 Genes Responsible for Congenital Heart Malformations as Monogenic Traits 1.6 Environmental Causes and the Teratogen Syndromes 1.7 Maternal Diabetes 1.8 Maternal Cigarette Smoking 1.9 Maternal Drug Ingestion 1.9.1 Alcohol 1.9.2 Cocaine 1.9.3 Lithium 1.9.4 Maternal Phenylketonuria 1.10 Folic Acid Supplementation 1.11 The Adult With Congenital Heart Defect 1.12 Empirical Risks for Offspring 1.13 Future Developments Appendix 1 Appendix 2 Appendix 3 Appendix 4 Appendix 5 Appendix 6 Appendix 7 Appendix 8 Appendix 9 Appendix 10 Appendix 11 Appendix 12 Appendix 13: Syndromes Tetralogy Further Reading 2 - Genetic Cardiomyopathies 2.1 Introduction 2.2 Hypertrophic Cardiomyopathy 2.2.1 Prevalence 2.2.2 Pathology 2.2.3 Phenotype 2.2.4 Natural History 2.2.5 Diagnosis 2.2.6 Management 2.2.7 Genetics 2.2.7.1 Cardiac Myosin Binding Protein C 2.2.7.2 Cardiac β-Myosin Heavy Chain (MYH7) 2.2.7.3 Cardiac Troponin I (TNNI3) 2.2.7.4 Cardiac Troponin T (TNNT2) 2.2.7.5 α-Tropomyosin (TPM1) 2.2.7.6 Myosin Light Chains 2.2.7.7 α-Cardiac Actin (ACTC1) 2.2.7.8 Putative HCM Genes 2.2.8 Molecular and Experimental Models of HCM 2.2.8.1 Interacting Heads Motif Disruption 2.2.8.2 Calcium Dysregulation 2.2.8.3 Energy Compromise 2.2.9 Genetic Phenocopies of Hypertrophic Cardiomyopathy 2.2.9.1 AMPK Dysfunction 2.2.9.2 Fabry Disease 2.2.9.3 Danon Disease 2.3 Dilated Cardiomyopathy 2.3.1 Prevalence 2.3.2 Pathology 2.3.3 Phenotype 2.3.4 Natural History 2.3.5 Diagnosis 2.3.6 Management 2.3.7 Genetics 2.3.7.1 Sarcomere Mutations in DCM 2.3.7.1.2 Troponin–tropomyosin complex. Pathogenic and likely pathogenic variants in α-tropomyosin (TPM1, <2%), cardiac troponin... 2.3.7.1.3 Cardiac actin (ACTC1). Dominant pathogenic and likely pathogenic variants in ACTC1 account for less than 1% of DCM [75... 2.3.7.1.4 β-Myosin heavy chain (MYH7). MYH7 mutations that cause DCM were identified from familial genetic linkage analyses [265... 2.3.7.1.5 MYBPC3. While the majority of HCM mutations in MYBPC3 encode LOF, most pathogenic variants in MYBPC3 that cause DCM ar... 2.3.7.2 Nonsarcomere Mutations in DCM 2.3.7.2.2 Phospholamban. The PLN gene encodes phospholamban, a critical regulator of cardiac calcium homeostasis that modulates ... 2.3.7.2.3 Metavinculin and vinculin. Splice variants of the 75-kb VCL gene give rise to metavinculin and vinculin. Vinculin is a... 2.3.7.2.4 Dystrophin. Dystrophin is a large striated muscle cytoskeletal protein that functions in force transduction and membra... 2.3.7.2.5 Desmin. The type III intermediate filament protein, design, is a 470-amino-acid muscle-specific protein that is expres... 2.3.7.2.6 Desmoplakin. The desmosome is an intercellular junctional complex critical for tolerating mechanical stress and is lin... 2.3.7.2.7 δ-Sarcoglycan. The DMD-associated glycoprotein complex is composed of α- and β-dystroglycans, α-, β-, γ- and δ-sarcogl... 2.3.7.2.8 Other DCM genes. Additional pathogenic and likely pathogenic variants have been identified less commonly in DCM patien... 2.4 Arrhythmogenic Right Ventricular Cardiomyopathy 2.4.1 Prevalence 2.4.2 Pathology 2.4.3 Phenotype and Natural History 2.4.4 Diagnosis and Management 2.4.5 Genetics 2.4.5.1 Cardiac Desmosomes 2.4.5.2 Atypical ARVC Genes 2.5 Ventricular Noncompaction 2.5.1 Prevalence 2.5.2 Pathology 2.5.3 Phenotype and Natural History 2.5.4 Diagnosis and Management 2.5.5 Genetics 2.6 Conclusion 3 - Hereditary Hemorrhagic Telangiectasia (Osler–Weber–Rendu Syndrome)* 3.1 Introduction 3.1.1 Historic Perspective 3.2 Phenotype and Natural History 3.2.1 Overview 3.2.2 Phenotype 3.2.2.1 Mucocutaneous Telangiectases 3.2.2.2 Epistaxis 3.2.2.3 Gastrointestinal 3.2.2.4 Central Nervous System 3.2.2.5 Lung 3.2.2.6 Liver 3.2.2.7 Other Manifestations 3.3 Genetics 3.3.1 HHT1 and Endoglin (ENG) 3.3.2 HHT2 and ACVRL1 3.3.3 HHT3 3.3.4 HHT4 3.3.5 Juvenile Polyposis–HHT 3.4 Genotype–Phenotype Correlations in HHT 3.5 ALK1 Signaling and HHT Pathogenesis 3.6 Animal Models of HHT 3.6.1 Mouse Models of HHT 3.6.1.1 Acvrl1/HHT2 Mouse Models 3.6.1.2 Eng/HHT1 Mouse Models 3.6.1.3 Bmp9 and Bmp10 Mouse Models 3.6.2 Zebrafish Models of HHT 3.6.2.1 acvrl1/HHT2 Zebrafish Models 3.6.2.2 eng/HHT1 Zebrafish Models 3.6.2.3 bmp9 and bmp10 Zebrafish Models 3.7 Mechanistic Basis of AVM Pathogenesis 3.7.1 Arterial Identity in HHT Pathogenesis 3.7.2 Impaired Pericyte/Vascular Smooth Muscle Cell Coverage in HHT Pathogenesis 3.7.3 Enhanced Angiogenesis in HHT Pathogenesis 3.7.4 Aberrant Endothelial Cell Migration in HHT Pathogenesis 3.7.5 HHT-Associated AVMs as a Secondary Consequence of Altered Hemodynamic Environment 3.8 Diagnosis 3.9 Management 3.9.1 Mucocutaneous Telangiectases 3.9.2 Epistaxis 3.9.3 Central Nervous System 3.9.4 Lung 3.9.5 Liver 3.9.6 Gastrointestinal 3.9.7 Anemia 3.9.8 Circulation 3.9.9 Pregnancy 3.9.10 Counseling 3.9.11 Life Expectancy 4 - Genetics of Electrophysiologic Disorders 4.1 Long QT Syndrome 4.1.1 Genetics of LQTS 4.1.2 Diagnosis 4.1.3 Genetic Testing 4.1.4 Risk Stratification 4.1.5 Treatment Strategies 4.2 Brugada Syndrome 4.2.1 Genetics of Brugada Syndrome 4.2.2 Clinical Manifestations 4.2.3 Diagnosis 4.2.4 Genetic Testing 4.2.5 Risk Stratification 4.2.6 Treatment Strategies 4.3 Catecholaminergic Polymorphic Ventricular Tachycardia 4.3.1 Genetics of CPVT 4.3.2 Clinical Manifestations 4.3.3 Diagnosis 4.3.4 Genetic Testing 4.3.5 Risk Stratification 4.3.6 Treatment Strategies 4.4 Arrhythmogenic Right Ventricular Cardiomyopathy 4.4.1 Genetics 4.4.2 Clinical Manifestations 4.4.3 Diagnosis 4.4.4 Genetic Testing 4.4.5 Risk Stratification 4.4.6 Treatment Strategies 4.5 Medical Workup after Sudden Unexplained Death Further Reading 5 - Heritable Thoracic Aortic Disease: Single Gene Disorders Predisposing to Thoracic Aortic Aneurysms and Acute Aortic Dissections 5.1.1 HTAD Genes Encoding Proteins Involved in SMC Adhesion and Contraction Highlights the Importance of Maintaining the Elastin... 5.1.2 Altered Genes That Disrupt the Extracellar Matrix 5.1.3 Genes with Pathogenic Variants Disrupting SMC Contraction 5.1.4 HTAD Genes Disrupting TGF-β Signaling 5.1.5 HTAD Genes Disrupting Other Pathways 5.2 Gene-Based Clinical Management for Heritable Thoracic Aortic Disease 5.2.1 COL3A1 5.2.2 ACTA2 5.2.3 PRKG1 5.2.4 MYLK 5.2.5 FLNA 5.2.6 TGFBR1 and TGFBR2 5.2.7 TGFB2, SMAD3, and TGFB3 6 - The Genetics of Blood Pressure Regulation 6.1 Introduction 6.2 History 6.2.1 Measurement of Blood Pressure 6.2.2 Early Observations on Heredity and Blood Pressure 6.2.3 Platt versus Pickering—Single Gene or Polygenic 6.3 Complexity of Blood Pressure Regulation 6.4 Single Gene Conditions with Hypertension or Hypotension 6.5 The GWAS Era 6.5.1 Chronology of GWAS Analyses of Blood Pressure 6.5.2 Examples of Blood Pressure Genes Identified by GWAS 6.5.3 Genetic Risk Scores and Hypertension 6.6 Conclusions 7 - Genetics and Genomics of Atherosclerotic Cardiovascular Disease 7.1 Introduction 7.2 Mouse Models of Atherosclerosis 7.2.1 Candidate Gene Approach Using Knock-Out Mice 7.2.2 Unbiased Mapping in Mouse Models 7.2.3 Challenges with Mouse Models 7.3 Candidate Gene Studies in Humans 7.4 Family-Based Studies in Humans 7.5 Association Studies in Humans 7.5.1 GWAS and RVAS 7.6 GWAS Findings for Atherosclerotic Traits 7.6.1 The 9p21 Locus 7.6.2 Additional GWAS Loci for CHD 7.6.3 SORT1 7.6.4 ADAMTS7 7.6.5 ABO 7.6.6 CXCL12 7.6.7 RVAS Findings for Atherosclerotic Traits 7.6.8 Association Study Findings for CHD Risk Factors 7.6.9 Next Steps for Novel CHD Risk Loci 7.7 Mendelian Randomization 7.7.1 PCSK9 7.7.2 Lipoprotein(a) 7.7.3 C-Reactive Protein 7.7.4 LDL and HDL Cholesterol and Triglycerides 7.8 Genetic Risk Scores and Prediction Algorithms for Personalized Medicine 7.9 Summary and Future Directions 8 - Genetic Disorders of the Lymphatic System 8.1 Introduction 8.2 Development of the Lymphatic System 8.3 Disorders of the Lymphatic System 8.4 Autosomal Dominant Inheritance 8.4.1 Congenital Primary Lymphedema 8.4.1.1 Milroy Disease/Hereditary Lymphedema Type 1A—VEGFR3/FLT4 8.4.1.2 Milroy-like Primary Lymphedema/Hereditary Lymphedema 1D—VEGFC 8.4.1.3 Microcephaly-Chorioretinopathy-Lymphedema Syndrome—KIF11 8.4.2 Autosomal Dominant Lymphatic-Related Fetal Hydrops (LRFH)—EPHB4 8.4.3 Late-Onset Primary Lymphedema 8.4.3.1 Lymphedema-Distichiasis Syndrome—FOXC2 8.4.3.2 Late-Onset Four-Limb Lymphedema—GJC2 (Cx47) 8.4.3.3 Meige Disease—No Gene Associated 8.4.3.4 Emberger Syndrome—GATA2 8.5 Autosomal Recessive Inheritance 8.5.1 Hennekam Lymphangiectasia-Lymphedema Syndrome, Type 1—CCBE1 8.5.1.1 Hennekam Lymphangiectasia-Lymphedema Syndrome, Type 2—FAT4 8.5.2 Hereditary Lymphedema Type 3/Generalized Lymphatic Dysplasia of Fotiou—PIEZO1 8.5.3 Hypotrichosis-Lymphedema-Telangiectasia Syndrome—SOX18 8.6 Mosaic Disorders with Lymphatic Phenotype 8.6.1 PIK3CA Related Overgrowth Spectrum (PROS)—PIK3CA 8.6.2 Proteus Syndrome—AKT1 8.7 Genetic Counseling 9 - Disorders of the Venous System 9.1 Introduction 9.2 The Venous System 9.3 Disorders of the Venous System 9.3.1 Glomuvenous Malformation 9.3.2 Inherited Venous Malformation 9.3.3 Sporadic Unifocal Venous Malformation 9.3.4 Multifocal Sporadic Forms of Venous Malformation 9.3.5 Molecular Basis of VM Pathogenesis 9.3.6 Hyperkeratotic Cutaneous Capillarovenous Malformation 9.3.7 Verrucous Venous Malformation 9.3.8 Other VM-Associated Syndromes 9.3.9 Conclusion 10 - Capillary Malformation/Arteriovenous Malformation 10.1 Introduction 10.2 Capillary Malformation 10.3 Sturge–Weber Syndrome 10.3.1 Arteriovenous Malformations 10.4 Capillary Malformation—Arteriovenous Malformation 11 - Cerebral Cavernous Malformations, Molecular Biology, and Genetics 11.1 Introduction 11.2 Clinical Genetics 11.2.1 Prevalence and Natural Clinical History 11.2.2 Pattern of Inheritance 11.2.3 Genetic Counseling 11.2.3.1 Sporadic Cases with a Unique Lesion on MRI 11.2.3.2 Symptomatic Cases with Multiple CCM Lesions and One or More Affected Relatives 11.2.3.3 Symptomatic Sporadic Cases with Multiple CCM Lesions 11.2.3.4 Asymptomatic Individuals Having an Affected Relative 11.2.3.5 Prenatal Screening 11.2.4 Genotype–Phenotype Correlations 11.3 CCM Molecular Genetics 11.3.1 CCM1-3 Germline Mutations 11.3.2 Are There Additional CCM Genes 11.3.3 Biallelic, Somatic and Germline, Mutations in Endothelial Cells from CCM Lesions 11.4 CCM Protein Partners and Signaling Pathways 11.4.1 CCMs and Endothelial Cell-Adhesion Processes 11.4.2 CCMs Negatively Regulate Angiogenesis 11.4.3 MEKK3-ERK5-Klf2/4 Pathway Upregulation Leads to CCM Lesion Development 11.4.4 Specific CCM3 Interactors and Activities 11.5 Modeling Human CCM Disease in Mouse Models for the Development of Pre-clinical Trials 11.5.1 CCM Mouse Models 11.5.2 Therapeutic Strategies Developed in CCM Mouse Models to Identify Repurposed Drugs Section 2: Respiratory Disorders 12 - Cystic Fibrosis Summary 12.1 Incidence of Cystic Fibrosis 12.2 Clinical Features 12.2.1 Classic Cystic Fibrosis 12.2.2 Nonclassic Cystic Fibrosis and CFTR-Related Disorders 12.3 Genetics 12.3.1 Identification of the Gene Responsible for Cystic Fibrosis 12.3.2 Properties of CFTR 12.3.3 Variants in the CFTR Gene 12.3.4 Effects of CF Variants on CFTR Function 12.3.5 Relationship Between CFTR Genotype and Phenotype 12.4 Diagnosis and Differential Diagnosis 12.5 Management 13 - Genetic Underpinnings of Asthma and Related Traits Glossary Nomenclature 13.1 Introduction 13.1.1 Definition 13.1.2 Asthma Diagnosis 13.1.3 Asthma Prevalence and Severity 13.2 The Genetics of Asthma and Allergic Diseases 13.2.1 An Overview of the Analysis of the Genetic Contributions in Asthma 13.2.1.1 Candidate Gene Studies 13.2.1.2 Linkage Studies 13.2.1.3 Genome-Wide Association Studies 13.2.2 Themes Revealed by Genetic Analysis of Asthma Susceptibility 13.2.2.1 TH2-Mediated Cell Response 13.2.2.2 Environmental Sensing and Immune Detection 13.2.2.3 Tissue Response 13.2.2.4 Epithelial Barrier Function 13.3.3 The Future of Asthma Genetics 13.3.3.1 Gene–Environment Interactions 13.3.3.2 Gene–Gene Interactions 13.3.3.3 Replication 13.3.3.4 Pharmacogenetics 13.4 Conclusion Support Conflict of Interest 14 - Hereditary Pulmonary Emphysema* Abbreviations 14.1 Introduction 14.2 Diseases With Airflow Limitation: Definitions 14.2.1 Pulmonary Emphysema 14.2.2 Chronic Bronchitis 14.2.3 Small Airway Disease 14.3 Phenotypic Evaluation in COPD 14.3.1 Pulmonary Function Tests 14.3.2 Chest CT 14.3.3 Questionnaire Phenotypes 14.3.4 Biochemical Markers 14.4 Cigarette Smoking and COPD 14.4.1 Causal but Variable Relationship of Smoking and COPD 14.4.2 Effects of Smoking at Different Life Stages 14.5 Severe AAT Deficiency 14.5.1 Description of the Protease Inhibitor Locus and Protease Inhibitor Alleles 14.5.2 Diagnosis of AAT Deficiency 14.5.3 Pathogenesis of COPD in Severe AAT Deficiency 14.5.4 Prevalence of Severe AAT Deficiency 14.5.5 Natural History of PI Z 14.5.6 Other Familial Factors Influencing the Expression of AAT Deficiency 14.5.7 Treatment of Severe AAT Deficiency 14.5.8 Who Should Be Tested for AAT Deficiency 14.5.9 Lessons from Severe AAT Deficiency 14.6 Risk of COPD in Z Allele Heterozygotes 14.6.1 PI MZ 14.6.2 PI SZ 14.7 COPD and COPD-Related Phenotypes in Other Genetic Syndromes 14.8 Risk to Relatives for Non-AAT COPD* 14.8.1 Familial Aggregation of Spirometry and COPD 14.8.2 Familial Aggregation of Severe, Early-Onset COPD 14.9 Linkage Analysis 14.9.1 Linkage Analysis in COPD Families 14.9.2 Linkage Analysis of Pulmonary Function in the General Population 14.10 Genetic Association Studies 14.11 Animal Models of COPD 14.12 Conclusions Further Reading 15 - Genetic Determinants of Interstitial Lung Diseases* 15.1 Introduction 15.2 Idiopathic Interstitial Pneumonias 15.2.1 Clinical Characteristics of IIPs 15.2.1.1 Idiopathic Interstitial Pneumonias 15.2.1.2 Familial Interstitial Pneumonia 15.3 Genetic Basis of IIP 15.3.1 Familial Studies 15.3.1.1 Surfactant Proteins 15.3.1.2 Telomere Pathway Genes and Telomere Length in FIP 15.3.1.3 ELMOD2 in Finnish FIP Cases 15.3.2 Idiopathic Pulmonary Fibrosis 15.3.2.1 MUC5B 15.3.2.2 Other Common Genetic Variants and IPF 15.3.3 Rare Variants and Common Variants 15.3.4 Clinical Outcomes 15.3.4.1 Disease Severity 15.3.4.2 Response to Medical Therapy 15.3.4.3 Lung Transplant Outcomes 15.3.4.4 Utilization in Clinical Care 15.3.5 Early Fibrosis 15.4 Systemic Diseases that can Cause ILD 15.4.1 Systemic Sclerosis and ILD 15.4.2 Sarcoidosis 15.4.3 Hypersensitivity Pneumonitis 15.4.4 Chronic Beryllium Disease 15.5 Other Genetic Diseases that Can Cause ILD 15.5.1 Dyskeratosis Congenita 15.5.2 Hermansky–Pudlak Syndrome 15.6 Other Restrictive Lung Diseases 15.6.1 Lymphangioleiomyomatosis and Tuberous Sclerosis 15.6.2 Pulmonary Langerhans Cell Histiocytosis 15.6.3 Pulmonary Alveolar Proteinosis 15.6.4 Lysinuric Protein Intolerance 15.6.5 Birt–Hogg–Dube 15.6.6 Neurofibromatosis 15.6.7 Pulmonary Alveolar Microlithiasis 15.6.8 Lipoid Proteinosis 15.6.9 Gaucher Disease 15.6.10 Niemann–Pick Disease 15.6.11 Fabry Disease 15.6.12 Marfan Syndrome 15.7 Conclusion 16 - Heritable and Idiopathic Forms of Pulmonary Arterial Hypertension* 16.1 Historical Perspectives and Introduction 16.2 Nomenclature 16.3 Incidence and Prevalence of HPAH and IPAH 16.4 Phenotype and Natural History of HPAH and IPAH 16.5 Inheritance and Genetics of PAH in Families 16.5.1 Reduced Penetrance 16.5.2 Gender Dimorphism 16.5.3 Variable Expressivity 16.5.4 Genetic Anticipation 16.6 Connecting BMPR2 to PAH 16.6.1 Identification of Mutations in BMPR2 in PAH that Occur in Families 16.6.2 Range of BMPR2 Mutations 16.6.3 BMPR2 Mutations in PAH that Occur Sporadically 16.6.4 BMPR2 Mutations in Other Disorders 16.6.5 Additional Genetic Modifiers of IPAH and HPAH 16.7 Molecular and Cellular Pathogenesis 16.7.1 BMPR2-Mediated Pathogenesis 16.7.1.1 Smad-Dependent BMP Signaling 16.7.1.2 MAPK-Dependent BMP Signaling 16.7.1.3 ACVRL1 and Endoglin 16.7.1.4 Serotonin 16.7.1.5 Transforming Growth Factor β1 16.7.1.6 Other Contributors to Pathogenesis 16.8 Diagnosis 16.9 Management 16.9.1 Approved Therapies in the United States 16.9.1.1 Adjunctive Therapies 16.9.1.2 Calcium Channel Blockers 16.9.1.3 Prostaglandin Analogs 16.9.1.4 ET Receptor Antagonists 16.9.1.5 Phosphodiesterase-5 Inhibitors 16.9.1.6 Surgical Therapy: Lung Transplantation 16.10 Counseling 16.10.1 Clinical Screening and Surveillance for PAH 16.10.2 Agents and Circumstances for At-Risk Subjects to Avoid 16.10.3 Genetic Counseling 16.10.4 Mutation Testing of Relatives at Risk Acknowledgments Section 3: Gastrointestinal Disorders 17 - Gastrointestinal Tract and Hepatobiliary Duct System 17.1 Introduction 17.2 Embryological Background 17.3 Classification of Gastrointestinal Disorders 17.3.1 Gross Defects of the Intestinal Anatomical Structures 17.3.1.1 Gastrointestinal Atresias 17.3.1.2 Defects of the Abdominal Wall 17.3.1.3 Malrotation 17.3.1.4 Duplication 17.3.1.5 Meckel Diverticulum 17.3.1.6 Partial Agenesis of the Pancreas 17.3.1.7 Congenital Defects of the Diaphragm 17.3.2 Disorders of the GI Enteric Nervous System (Congenital Intestinal Aganglionosis; Hirschsprung Disease) 17.3.2.1 Definition and Clinical Aspects 17.3.2.2 Types of Aganglionosis 17.3.2.3 Diagnosis 17.3.2.3.1 Clinical signs. Failure to pass meconium within the first 48h is the first and sometimes only manifestation in the ne... 17.3.2.3.2 X-ray. Regular abdominal X-rays show a distended proximal colon and small intestines above an empty rectum (Fig. 17.3... 17.3.2.3.3 Rectal biopsy. The absence of ganglion cells in the myenteric plexus (Auerbach) and the submucosal plexus (Meissner) ... 17.3.2.4 Formal Genetics 17.3.2.4.1 Inheritance pattern. Systematic genetic studies of the familial occurrence of nonsyndromic Hirschsprung disease prece... 17.3.2.4.2 Genetic counseling. If the index patient is female, the proportion of affected first-degree relatives is about 6%–18%... 17.3.2.5 Molecular Genetics 17.3.2.5.1 Loci, genes, and noncoding variants involved. The underlying genetic components of this complex disorder include codi... 17.3.2.5.2 Role of the RET gene. The RET gene (MIM 164761), located on the long arm of chromosome 10, region 1, band 1.2, encode... 17.3.2.6 Syndromic Forms of Hirschsprung Disease 17.3.2.7 Hirschsprung Disease in Mutant Mice 17.3.3 Genetic Defects of the Hepatobiliary Duct System 17.3.3.1 Biliary Atresia 17.3.3.2 Arteriohepatic Dysplasia Syndrome (Alagille Syndrome) 17.3.3.2.1 Clinical manifestations. ALGS (OMIM 118450/601920) is an autosomal dominant multisystem developmental disorder with i... 17.3.3.2.2 Formal genetics. The first descriptions of ALGS were based on familial occurrence consistent with autosomal dominant ... 17.3.3.2.3 Molecular genetics. In about 94% of patients, ALGS is caused by mutations in the gene, Jagged-1 (JAG1, OMIM 601920). ... 17.3.3.2.4 Diagnosis and genetic counseling. In a typical constellation the diagnosis can be made easily on the basis of the mai... 17.3.4 Functional GI Disorders 17.3.4.1 Irritable Bowel Syndrome 17.3.4.2 Hereditary Pancreatitis 17.3.4.3 Infantile Hypertrophic Pyloric Stenosis 17.3.4.4 Achalasia 17.3.4.5 Intestinal Pseudo-obstruction 17.3.4.6 Intussusception 17.4 The GI Microbiome 18 - Inflammatory Bowel Disease* 18.1 Introduction and Disease Definition 18.2 Phenotypic Heterogeneity 18.3 Racial and Ethnic Differences 18.4 Familial Aggregation 18.5 Twin and Spouse Studies 18.6 Inferences Regarding Mode of Inheritance 18.6.1 Simple Mendelian Model 18.6.2 Multifactorial/Polygenic Model [31c] 18.6.3 Multilocus (Oligogenic) Model 18.6.4 Genetic Heterogeneity Model 18.7 Association of Inflammatory Bowel Disease with Rare Genetic Syndromes 18.7.1 Turner Syndrome 18.7.2 Hermansky–Pudlak Syndrome 18.7.3 Glycogen Storage Disease Type Ib 18.7.4 Immunodeficiency Syndromes 18.8 Associations With Other Diseases 18.9 Gene and Environmental Interactions 18.9.1 Smoking 18.9.2 Westernization 18.9.3 Appendectomy 18.9.4 Intestinal Bacteria 18.9.5 An Evolutionary Perspective 18.10 Gene Identification 18.10.1 Genome-wide Linkage Studies 18.10.2 Chromosome 16 (IBD1, OMIM #266600) 18.11 Meta-Analysis Across all Genome Scans 18.12 Candidate Gene Studies (Table 18.10) 18.12.1 The Major Histocompatibility Complex (MHC; IBD3) 18.12.1.1 The MHC Class II Region 18.13 Clinical Application of Genetic Information Further Reading 19 - Bile Pigment Metabolism and Its Disorders 19.1 Introduction 19.2 Formation of Bilirubin 19.2.1 Enzyme-Mediated Opening of the Heme Ring 19.2.1.1 Heme Oxygenase Inhibitors 19.2.2 Reduction of Biliverdin to Bilirubin 19.2.3 Measurement of Bilirubin Production 19.3 Structure of Bilirubin 19.3.1 Photoisomerization of Bilirubin 19.4 Possible Physiologic Benefits of Biliverdin and Bilirubin 19.5 Bilirubin-Induced Neurological Dysfunctions 19.5.1 Clinical Features of Bilirubin Neurotoxicity 19.5.2 Pathophysiology of Kernicterus 19.5.3 Biochemical Mechanism of Bilirubin Toxicity 19.5.4 Bilirubin Nephrotoxicity 19.6 Disposition of Bilirubin 19.6.1 The Role of Albumin 19.6.2 Bilirubin Uptake by Hepatocytes 19.6.3 Storage of Bilirubin Within the Hepatocyte 19.6.4 Bilirubin Conjugation 19.6.4.1 Conversion of Bilirubin to Polar Derivatives 19.6.4.2 Enzyme-Catalyzed Glucuronidation of Bilirubin 19.6.4.3 Families and Subfamilies of UGT 19.6.5 Excretion of Conjugated Bilirubin Across the Bile Canaliculus 19.6.6 Nuclear Receptors 19.6.7 Degradation of Bilirubin in the Gastrointestinal Tract 19.6.8 Extrahepatic Disposition of Bilirubin 19.6.9 Alternative Pathways of Bilirubin Disposition 19.6.9.1 Bilirubin Measurement 19.6.10 Bilirubin Measurement Following Reaction With Diazo Reagents 19.6.11 Chromatographic Analysis of Bilirubin as Intact Tetrapyrrole 19.6.12 Slide Test 19.6.13 Transcutaneous Bilirubinometry 19.6.14 Measurement of Bilirubin Unbound to Protein (Free Bilirubin, Bf) 19.7 Bilirubin in Body Fluids 19.7.1 Bilirubin in Plasma 19.7.2 Bilirubin in Bile 19.8 Disorders of Bilirubin Metabolism 19.8.1 Metabolic Disorders Causing Unconjugated Hyperbilirubinemia 19.8.1.1 Neonatal Hyperbilirubinemia 19.8.1.1.1 Increased bilirubin load. Bilirubin production, as measured by carbon monoxide production, is increased in the newbor... 19.8.1.1.2 Low hepatic bilirubin uptake. During the first few days of life, the rate of hepatic uptake of bilirubin is lower tha... 19.8.1.1.3 Reduced bilirubin glucuronidation. Only 1% of the normal adult level of hepatic UGT1A1 activity is present at birth [... 19.8.1.1.4 Maternal milk jaundice. Serum bilirubin levels in breast-fed infants are, in general, higher than in formula-fed babi... 19.8.1.1.5 Maternal serum jaundice. This syndrome, associated with moderate to severe unconjugated hyperbilirubinemia (8.9–65mg/... 19.8.1.1.6 Decreased canalicular bilirubin excretory capacity. Maturation of canalicular excretion processes may take longer tha... 19.8.1.1.7 Increased intestinal reabsorption. Intestinal β-glucuronidase–mediated deconjugation releases unconjugated bilirubin ... 19.8.1.2 Hyperbilirubinemia due to Bilirubin Overproduction 19.8.1.3 Inherited Disorders of Bilirubin Glucuronidation 19.8.1.3.1 Crigler–Najjar syndrome type 1. Crigler and Najjar [186] described this rare, recessively inherited syndrome in 1952 ... 19.8.1.3.1.1 Laboratory tests. Serum bilirubin levels usually range from 20 to 25mg/dL, but may reach 50mg/dL [186–188]. Serum b... 19.8.1.3.1.2 Liver histology. Historically, liver histology has been reported as normal, except that, in several patients, bilir... 19.8.1.3.1.3 Abnormalities of hepatic UGTs. Hepatic UGT activity toward bilirubin is virtually absent in all patients with CN1. ... 19.8.1.3.1.4 Animal models of CN1. Gunn rats are a mutant strain of Wistar rats that exhibit lifelong nonhemolytic unconjugated ... 19.8.1.3.1.5 UGT1A1-knockout mice. A mouse model of CN1 has been generated by disrupting the exon 4 of the UGT1 locus [41]. Thes... 19.8.1.3.1.6 Treatment of CN1. Temporizing measures are directed at reducing serum bilirubin levels. Definitive treatment consis... 19.8.1.3.1.7 Phototherapy. Phototherapy is the most commonly used medical therapy for severe unconjugated hyperbilirubinemia [19... 19.8.1.3.1.8 Plasmapheresis. During neurologic emergencies, serum bilirubin concentration can be acutely reduced by plasmapheres... 19.8.1.3.1.9 Orthotopic liver transplantation. Presently, the transplantation of whole liver or a segment of the liver is the on... 19.8.1.3.2 Experimental methods for reduction of serum bilirubin levels 19.8.1.3.2.1 Inhibition of heme oxygenase activity. Non-iron metalloporphyrins are strong inhibitors of microsomal heme oxygenas... 19.8.1.3.2.2 Oxidative degradation of bilirubin. Bilirubin oxidase from Myrothecium verrucaria [231] catalyzes the oxidation of ... 19.8.1.3.2.3 Induction of P-450c. Induction of cytochrome P-450c activity results in increased oxidative degradation of bilirubi... 19.8.1.3.2.4 Replacement of UGT1A1 activity. UGT1A1 activity is present in excess in normal liver. Therefore, partial replacemen... 19.8.1.3.2.5 Gene therapy. Supplementation with a normal UGT1A1 gene is an attractive potential therapeutic modality. Methods fo... 19.8.1.3.2.6 Targeted DNA integration. Recently, the possibility of inserting a DNA of interest at a specific genomic site by ho... 19.8.1.3.2.7 Genetic lesions. Molecular genetic studies that have performed so far support an autosomal recessive mode of inheri... 19.8.1.3.2.8 Clinical features. Gilbert syndrome is usually diagnosed in young adults who are incidentally found to have mild, p... 19.8.1.3.2.9 Incidence. Gilbert syndrome is perhaps the most common inherited disorder in man, the reported incidence ranging fr... 19.8.1.3.2.10 Bilirubin glucuronidation. Hepatic UGT1A1 activity, as determined by in vitro assays, is present at a consistently... 19.8.1.3.2.11 Diagnosis. Gilbert syndrome is diagnosed in individuals with mild unconjugated hyperbilirubinemia without evidence... 19.8.1.3.2.12 Effect of fasting. Reduction of daily caloric intake to 400kcal for 48h results in elevation of serum bilirubin le... 19.8.1.3.2.13 Nicotinic acid tests. Intravenous administration of nicotinic acid increases unconjugated hyperbilirubinemia, prob... 19.8.1.3.2.14 Bilirubin Conjugates in Bile. As in CN2, bile in Gilbert syndrome contains an increased proportion of bilirubin mo... 19.8.1.3.2.15 Genetic basis of Gilbert syndrome. Gilbert syndrome is associated with a variant TATAA box in the promoter upstrea... 19.8.1.3.2.16 Health implications of Gilbert syndrome. Gilbert syndrome is generally considered innocuous, and its recognition i... 19.8.1.3.2.17 Animal Model. Bolivian squirrel monkeys have higher serum unconjugated bilirubin concentrations and a greater hype... 19.8.2 Disorders Associated With Predominantly Conjugated Hyperbilirubinemia 19.8.2.1 Dubin–Johnson Syndrome 19.8.2.1.1 Laboratory tests. Liver function tests, including serum bile acid levels, are normal [323]. Serum bilirubin levels fl... 19.8.2.1.2 Organic anion transport. The hepatic secretion of bilirubin glucuronides, the leukotriene LTC4, reduced and oxidized ... 19.8.2.1.3 Urinary Coproporphyrin Excretion. In normal subjects, approximately 75% of the urinary coproporphyrin is isomer III, ... 19.8.2.1.4 Genetic basis and inheritance. Dubin–Johnson syndrome has been reported in all races and both sexes. There is a high ... 19.8.3 Animal Models 19.8.3.1 Mutant Corriedale Sheep 19.8.3.2 TR− rats 19.8.3.3 A Nonhuman Primate Model 19.8.3.4 Rotor Syndrome 19.8.3.4.1 Organic anion excretion. After intravenous injection of 5mg/kg BSP, over 25% of injected BSP is retained in serum at ... 19.8.3.4.2 Hepatic storage. Transport maximum and hepatic storage of BSP has been determined by a constant infusion technique [3... 19.8.3.4.3 Urinary Coproporphyrin Excretion. In Rotors’ syndrome, total urinary coproporphyrin is increased two- to fivefold ove... 19.8.3.5 Hyperbilirubinemia Resulting from Inherited Cholestasis Syndromes 19.8.3.5.1 Progressive familial intrahepatic cholestasis (PFIC). These inherited disorders do not specifically affect bilirubin ... 19.8.3.5.2 Progressive familial intrahepatic cholestasis type I. PFIC I was originally described in a family in the Amish-Mennon... 19.8.3.5.3 Benign recurrent intrahepatic cholestasis. This disorder was first described in 1959 [375]. It presents in adolescenc... 19.8.3.5.4 Progressive familial intrahepatic cholestasis type II. This disorder resembles Byler disease clinically, but occurs i... 19.8.3.5.5 Progressive familial intrahepatic cholestasis type III. PFIC III involves mutations in the multidrug resistance prote... 19.8.3.5.6 Progressive familial intrahepatic cholestasis type IV. In 2014, 33 children from 29 families were reported to have se... 19.8.3.5.7 Treatment. The treatment options currently available for PFICs are limited. Experimental transplantation of normal he... 19.8.3.5.8 Other inherited cholestatic disorders. The cholangiopathy of North American Indian childhood cirrhosis is caused by t... Further Reading INDEX A B C D E F G H I K L M N O P Q R S T U V W X Y Back Cover